
Modified from Silberschatz, Galvin and Gagne & Stallings

Lecture13
 Bounded Buffer Problem

2 CS 446/646 Principles of Computer Operating Systems

Chapter 6: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Atomic Transactions

3 CS 446/646 Principles of Computer Operating Systems

Deadlock

 Deadlock – two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Priority Inversion - Scheduling problem when lower-priority process holds a

lock needed by higher-priority process

4 CS 446/646 Principles of Computer Operating Systems

Starvation – indefinite blocking.
A process may never be removed from the semaphore queue in
which it is suspended

 Order of arrival retainment:

 Weak semaphores:

 The thread that will access the critical region next is selected randomly

 Starvation is possible

 Strong semaphores:

 The thread that will access the critical region next is selected based on

its arrival time, e.g. FIFO

 Starvation is not possible

Starvation

5 CS 446/646 Principles of Computer Operating Systems

Other Synchronization problem(Classical

Problems of Synchronization)

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

6 CS 446/646 Principles of Computer Operating Systems

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

7 CS 446/646 Principles of Computer Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the producer process

 do {

 // produce an item in nextp

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (TRUE);

8 CS 446/646 Principles of Computer Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer to nextc

 signal (mutex);

 signal (empty);

 // consume the item in nextc

 } while (TRUE);

9 CS 446/646 Principles of Computer Operating Systems

ASSIGNMENT

 Q: Explain bounded buffer algorithm.

